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The steady movement of a liquid meniscus in a circular capillary tube has been exam- 
ined theoretically for dynamic contact angles close to 90" with minute slippage of the 
liquid on the solid, thus relaxing the conventional no-slip boundary condition. The 
resulting flow field does not produce an unbounded force at  the contact line, contrary 
to that with the no-slip condition. The interfacial velocity, wall stress, fluid pressure 
and the meniscus shape are calculated, and the significance of dynamic contact-angle 
measurements is discussed. A modified version of the classical Washburn equation 
which takes account of the meniscus also reveals the importance of slippage. 

1. Introduction 
Wetting and dewetting of solids by liquids involve the movement over solid surfaces 

of the solid/liquid/gas (or liquid) line of contact, an understanding of whose motion is 
important in many circumstances. For example, to form good polymeric adhesive 
joints between solids (Schonhorn, Frisch & Kwei 1966), wetting of the solid by the 
melt before it solidifies is desired; to recover efficiently the crude oil from the pores 
of reservoir rocks by displacement with (immiscible) water (Taber 1969), a 
relation between the displacement rate and pressure is desired; when fibres and 
sheets are withdrawn from (or immersed into) liquids for surface treatment (Inverarity 
1969), the maximum rate of withdrawal without the entrainment of bulk liquid is 
sought. 

To understand the dynamics of the contact-line movement we must solve the 
Navier-Stokes equation for the flow of the liquid over the solid surface. The position 
of the moving liquid surface is not known a priori but must be determined to satisfy the 
equation and the boundary conditions. It may be found by assuming reasonable trial 
shapes of the liquid surface with a given dynamic contact angle1 Od and then, after 
solving the Navier-Stokes equation, establishing which one satisfies the boundary 
conditions at the liquid surface. As pointed out by Huh & Scriven ( 1  971), this approach 
to locating the position of the liquid surface fails because the normal stress on the 
liquid surface then varies inversely with distance from the contact line, so that it is 
impossible to satisfy the normal-stress boundary condition. This failure arises from a 
purely kinematic reason: for the contact line to move, adjacent liquid elements must 

t Present address : Exxon Production Research Co.,  Houston, Texas 7701. 
$ Experimental values of the dynamic contact angle Od, the angle formed by the liquid inter- 

face and the solid surface at the moving contact line, are available in the literature (e.g. Elliott & 
Riddiford 1967) as a function of the contact-line velocity U for a number of spreading systems; 
however, efforts to predict Bd theoretically as a function of U, the static contact angle 0, and the 
properties of the liquid and solid have been generally unsuccessful. 
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be brought to (or removed from) the solid surface. Of necessity, the adjacent elements 
assume the velocity of the contact line, but at  the same time they should not move on 
the solid surface if we enforce the conventional no-slip condition of fluid mechanics; 
doing this, however, creates a discontinuity in velocity at the contact line (Dussan V. 
& Davis 1974). 

To resolve this anomaly various remedies are possible. 
(i) The measured dynamic contact angles were obtained at  low optical resolution 

and therefore could differ appreciably from the microscopic values if there is a severe 
meniscus deformation near the contact line due to flow. There is thus the possibility 
that the dynamic contact angle at  the microscopic level is 180"; the liquid element 
would then roll onto (or peel from) the solid. 

(ii) Near the contact line, there may exist a very small region where the continuum 
hydrodynamic equations are inadequate; the contact-line movement may be not a 
mechanical process but a surface diffusive process. 

(iii) We may relax the no-slip condition at the solid/liquid interface. 
Experimental observations of contact-line movement, which are being made in our 

laboratory and will be reported later, reveal that the rolling scheme with a dynamic 
contact angle of 180" cannot be a universal spreading mechanism. For example, 
dynamic contact angles of about 30" were observed in the scanning electron microscope 
at  a resolution of about 1 pm when silicone oils spread on aluminium-coated smooth 
mica surfaces (Oliver, Huh & Mason 1977). The second possibility described above 
has been discussed by Hansen & Toong (1971b), who concluded that in the region 
of the contact line the classical concepts of fluid mechanics fail. However, they could 
not specify either the exact size of the region or how the fluid behaviour there is related 
to that in the continuum zone. In this paper, we explore the possibility of slippage. 

The hypothesis that liquid immediately next to a solid does not slip relative to the 
solid has proved acceptable as a basic principle in fluid mechanics, but it should be 
remembered that it was deduced entirely from experiments. Many experiments have 
been performed to detect the slippage but have yielded inconclusive results (e.g. 
Bulkley 1931); exceptions, however, have been claimed when the liquid flows in a very 
narrow capillary tube with a resultant high wall stress (Derjaguin & Fedyakin 1969), 
and when certain polymers (Pearson 1966, p. 20) and non-wetting liquids (Tolstoi 
1952b) presumably take a long time to adhere to the solid. For contact-line movement, 
the shear stress on the solid surface may be very large near the contact line as suggested 
by Huh & Scriven (1  97 1)  ; and as the liquid element is brought to the solid surface at the 
contact line, there will be a relaxation time during which the bonding of liquid mole- 
cules to the solid is incomplete. Therefore, while slippage is generally insignificant at 
liquid/solid interfaces, there is a distinct possibility that it is meaningful near the 
moving contact line during spreading. 

To study this possibility, we consider the steady movement of a liquid meniscus 
displacing air or its own vapour in a circular capillary. The tube radius a is sufficiently 
small that the effect of gravity is negligible, i.e. pga2/yL 4 1, where p is the liquid 
density, g is the acceleration due to gravity and yL is the surface tension of the liquid. 
We restrict our study to the systems for which the meniscus profile z = h(r) in cylin- 
drical co-ordinates r and z (see figure 1) is approximately flat everywhere, i.e. 

Idh/drl < 1,  or h = lho/al 4 1, 
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FIGURE 1.  Schematic diagram of a liquid meniscus moving steadily in a circular capillary tube. 

where h,, is the meniscus height at r = 0 when h = 0 at r = a. By initially approxi- 
mating h = 0 and thus pre-empting the normal-stress condition at  the liquid surface, 
Bhattacharji & Savic (1965) obtained the solution for the flow field accompanying 
the meniscus movement with no slippage of liquid on the solid. When we apply the 
normal-stress condition at the liquid surface (z  = 0) to estimate h(r) ,  we fail because 
theinitialassumption Idhldr] < 1 cannot be observed near the contact line (see following 
section). To remedy the situation, we first replace the no-slip condition with the 
classical slippage boundary condition (Dryden, Murnaghan & Bateman 1956) that 
the slip velocity Av is proportional to the shear stress T, exerted on the solid (model I 
in figure 2) : T, = PAv for z 2 0, 

where ,13 is the slip coefficient, so that ,!3 = co represents the conventional no-slip con- 
dition. The characteristic length 1 3 Zplp, where p is the liquid viscosity, provides an 
indication of the size of the region near the contact line where slip is important. 

We also consider a simple alternative slippage model. When an element of the 
spreading liquid is brought from the liquidlgas interface to the solid surface at z = 0, 
r = a, its direction of flow is suddenly changed and it is subjected to molecular 
interactions with the solid surface. The molecules of the liquid element which had 
been aligned at the liquid surface may then become disoriented; for them to be re- 
oriented at the liquid/solid interface, a reorientation time r is required (Hansen & 
Miotto 1957). In  the region of width E = U r  from the contact line at the liquid/solid 

(1) 

14-2 
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FIGURE 2. Hydrodynamic models of slippage. (a) Model I:  classical slippsge. 
(a) Model 11: local slippage. 

interface, where U is the contact-line velocity, re-orientation and bonding of the 
liquid molecules to the solid will occur, accompanied by slip of liquid on the solid. For 
this model (model I1 in figure 2), we assume that over the distance 1 the liquid slips 
freely, but thereafter the liquidlsolid bonding has been completed and the no-slip 
boundary condition is observed on the solid surface: 

T, = 0 for 0 < z < I ;  Av = 0 for z > 1. (2) 

In  the next section, we consider model I and examine whether the difficulties en- 
countered with the no-slip solution are removed. Since the exact solution of the 
Bhattacharji-Savic problem with the slippage boundary condition is difficult to obtain, 
we attempt an asymptotic solution, for E = 1/a < 1, which is valid uniformly over the 
entire flow region. This is done by obtaining a solution (by an outer expansion) which is 
valid away from the contact line but breaks down near it and another solution (by an 
inner expansion) which is valid near the contact line but breaks down away from it, 
and then matching the two solutions (Cole 1968). This matching technique has the 
advantage that, while the spreading problem can still be tackled with the no-slip 
condition for its appropriate flow domain except for the contact-line region, the ano- 
maly in the contact-line region can be remedied locally. The flow behaviour near the 
contact line is examined, and the interfacial velocities, wall stress, pressure and menis- 
cus shape are calculated. Model I1 is similarly studied in 93. In  the last section, a 
modified version of the Washburn (1921) equation is given which takes account of the 
meniscus, and the significance of the experimental measurements of the dynamic 
contact angle is discussed. 

2. Slippage Model I 
To express the hydrodynamic problem of the meniscus movement in the simplest 

mathematical form, we employ the following dimensionless variables : 

E = rla, q = z/a, q5 = @/a2U, H = h/Aa, 
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where CD is the stream function defined by the two velocity components in the r and z 
directions respectively, i.e. 

u = r-l a@/&, v = - r-la@/ar.  (3)  

If the Reynolds numberpaU/p is small, the flow field behind the meniscus formed by an 
incompressible Newtonian liquid can be determined by solving the creeping-flow 
approximation to the Navier-Stokes equation 

(---- a2 i a +-) a 2  2 # = O .  

a% t a t  aq2 
(4) 

The boundary conditions to be applied are as follows. 
(i) Vanishing normal component of velocity at  the solid surface: 

$ = O  at t = 1 .  (5) 

(ii) The slippage boundary condition, which from (1)  is 

where E = l/a < 1. 
(iii) Vanishing normal component of velocity at  the liquid surface: 

(iv) Vanishing tangential stress at  the liquid surface: 

(v) The normal-stress condition at  the liquid surface: 

- A -  a24 l a +  a24 A d2H/dg2 
ac2 6 %  a,P)1 = g[{l +A2(dH/d t )2 }g+{ l  +h2(dH/dt )2) t  

at 7 = A H ,  (9) 

where u = p U / y ,  < 1,  p = aP/pU and P i s  the liquid pressure above that of the air. 
The boundary conditions which should apply for the meniscus shape are 

(vi) d H / d t  = A-' tan (6, - 90") at 6 = 1 , (10) 

(vii) dH/dg = 0 at 6 = 0, (11) 

where led- 90'1 < 1,  which, together with u < 1,  is generally required to maintain 
A < 1 as we shall see later. 

When u = 0, (9) becomes the Young-Laplace equation defining the static meniscus 
profile, and 6d-f  Be; thus p = (2/a) sin (6, - 90") or P = (2yL/a) sin (0, - 90)' when 
there is no flow. 
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Because the position 7 = AH of the liquid surface is as yet unknown, we attempt a 
solution in the form of a power series in h for the domain perturbation in the neigh- 
bourhood of 7 = 0: 

(12) 

where h < 1.  If the qSi) are analytic in 7 at 7 = 0, the boundary conditions at the liquid 
surface may be applied at  7 = 0, by expanding #([, 7) in a Taylor series at  7 = 0: 

# = #(O) + h#(1) + . . . , 

$(E, AH) = pqt, 0) + h [ p ) ( t ,  0) + m # ( o ) ( E ,  o)/a71+ . . . . (13) 

Even though the successive terms of (12) can in principle be obtained by solving (4)-( 9) 
by inserting (12) and (13), we restrict our consideration to the first term #@). The 
boundary conditions (7)-( 9) then become, respectively, 

#(O) = 0, a2#(0)/ay2 = 0 at 7 = 0, (141, (15) 

where p(0)is the first term in the series expansion ofp in A. Equation (4) and the bound- 
ary conditions (5) and (6) will remain unchanged but with # s i n  place of #. The stream 
function #(O) may now be obtained by solving (4) with the boundary conditions (5), 
(6), (14) and (15); the normal-stress condition (16) and the boundary conditions (10) 
and (11) then define the first estimate of the meniscus shape hH(6). 

Since B < 1,  we propose to solve for #(O) by employing the asymptotic matching 
technique (Cole 1968). However, no comprehensive treatment of the asymptotic 
expansions is attempted; we shall be content with application of the method to obtain 
the first-order matched soIution, even though the higher-order terms can in principle be 
obtained. 

An outer expansion 

If we consider only the first term of the expansion of #(O) in B, i.e. 

#(O) #i0)(t, 7) + O H ,  

the problem to be solved for #h0) is, from (4)-(6) and (14) and (15), 

#Lo) = o at t = 1, 7 = 0, (19)9 (20) 

t-1a#io)/ag = - i at .g = 1, (21 1 

a2$io)/@2 = 0 at 7 = 0. (22) 

This is exactly the no-slip problem defined by Bhattacharji & Savic (1965), who ob- 
tained as its solution 



steady movement of a meniscus in a tube 407 

and I, is a modified Bessel function of order n. Even though Bhattacharji & Savic 
(1965) discussed in detail the flow field described by (23), they did not recognize that it 
resulted in an infinite force at 5 = 1 , ~  = 0, as mentioned in the introduction. To show 
that $Lo) is not a valid approximation for $fO) near the contact line, we make the change 
of variables 

and express (23) in terms of these 'inner' variables: 

$p = gom c (E) (1 --ex) (I, (:) Il (:-..) - (1  --€x)Il (:) I, (z  - --Kx ) } - si::y d K  

= 2 n - 1 ~ ~  tan-1 (y/x) + O(s2). (25) 

Here k = K/C and we have used the expansion 

ez 4n2- 1 + ...). 
I&) N - (1 -- 

(2n2)4 82 

The first term on the right-hand side of (25) approximates $Lo) for the immediate 
neighbourhood of the contact line. This approximation is in fact a special case (# = goo, 
pzi = 0 in their notation) of the no-slip solution obtained by Huh & Scriven (1971)) who 
discussed in detail its inadequacy near the contact line. In particular, the normal 
stress at the approximate location 7 = 0 of the liquid surface according to this solution 
is 

Inserting this into (16)) we see that the contact-angle condition (10) cannot be 
satisfied. It is therefore necessary to consider also a limit of #O) as E - +  0 which retains 
information on the effect of slip neax the contact line. 

An inner expansion 

To obtain an approximation to 
expand #(O) in powers of E in terms of the inner variables x and y as 

in the neighbourhood of the contact line, we 

$(O) = #(O)/€ N $iO'(X, y)  + O(e) ,  (27 1 
again restricting consideration to the first term of the expansion. 

Equations (4)-(6) and (14) and (15) then become 

$&") = o at x = 0, y = 0, 

a2$f6°)py2 = o at y = 0, 

Employing the Fourier sine transform, we can derive the following integral as the 
formal solution of the problem thus defined: 
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FIGURE 3. Streamlines near the contact line for model I. z (a-r)/Z and y z/Z. 

which can be expressed in an infinite series as 

m 

wcosy+(y+ln<)siny+ n=l  c ( s s i n ( n w + y ) ) ] ,  nn! (34) 

where 5 E (x2 +y2)4, w = tan-' (y/-2), E, is the exponential integral, y = 0.5772.. . is the 
Euler constant, and Im { } designates the imaginary part of the argument. The infinite 
series in (34) converges rapidly and figure 3 shows the streamlines at  the corner, calcu- 
lated by taking the first ten terms of the series in (34). The flow velocity is single-valued 
( = 0) at the contact line (5  = 0). Very near the contact line, the shear stress component 
attains a finite value 

but the normal stress components and the pressure p still show a weak singularity at  
< =  0: 

4 2a av 
---[or u ax %e U ar or ~ / ( p ; ) ]  - 7T€ -1n<+0(1). 

It can also be deduced from (34) that at  the contact line only a logarithmic singularity 
occurs in the viscous dissipation function, which becomes finite when integrated over a 
liquid volume including the contact line. The contact-line movement is therefore not 
accompanied by an infinite rate of viscous dissipation, as predicted by the no-slip 
solution. The flow field defined by (34) has thus proved to be free of the inadequacies 
discussed by Huh & Scriven (1 971). 
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A matched solution 
By matching the above two solutions, which are respectively valid away from and near 
the contact line, we can obtain a solution which is uniformly valid for the entire flow 
region. For this purpose, we express the outer expansion in terms of the inner var- 
iables as in (25); we also express the inner expansion in terms of the outer variables: 

A uniformly valid composite expansion can be obtained by adding (23) and (33) and 
subtracting hhe common part (2177) extan-l (ylz) (Cole 1968, p. 13): 

$(o) N + +i0) - 277-k32 tan-1 (y/x) 

+"ex[jo 77 
OD e-kx k ( k +  sin 1) ky dk - tan-l@] 

The velocity on the meniscus can be likewise calculated as 

Figure 4 shows u(r ,  O)/U as a function of E for various values of e.  The integral in (37), 
and the other integrals which follow, was calculated numerically using the Gaussian- 
Laguerre quadrature formula with 16 divisions. We see that with the outer expansion 
alone U(T + a, 0) = 2U/n ; with the addition of the inner expansion, the velocity sharply 
decreases near the contact line and becomes zero at  the line. The liquid velocity on the 
solid surface is 

= 1 - 2n-l[ciysiny - si y cosy] (38) 

where ci and si are the cosine and sine integrals, respectively (Abramowitz & Stegun 
1965, p. 231). At the contact line, the velocity is zero, but v(a, z )  = Uis rapidly attained 
away from the line. The shear stress T, on the solid wall becomes 

Figure 5 shows T,/(pU/a) as a function of 7 for various E. With the no-slip condition, 
T, N - 4,uU/nx near the contact line; with slip, the stress becomes bounded at  the 
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FIGURE 4. Liquid velocity on the menimus (z = 0). 

contact line, where T, = -2pU/l  = U/,8, which is equivalent to the wall stress for 
Poiseuille flow in a tube of radius 21.. When z is large, %+ - 4pU/a, the value for 
Poiseuille flow in the tube of radius a being considered. 

The normal stress T, on the meniscus (z = 0) can be calculated as 

1-e5E1(x)(2+x)+-  +PA,  
5 'I 

where PA = pUpA/a is the liquid pressure at the apex ( r  = z = 0) of the meniscus with 
respect to the constant air pressure. Figure 6 shows Tk/(pU/a)  as a function o f f ,  where 

dk 
k lom C(k)  [kI,(k) - 211(k)] - = 2.034. and 

We can see that, with the outer expansion alone, T, N - 4pU/lr(a - r )  near the contact 
line; with the addition of  the inner expansion, the singularity at the contact line still 
remains but T, N (8pUInl) In (a-r) .  

The approximate meniscus profile z = h(r) can be calculated by inserting (40) into 
(16). Integrating (16) with the boundary condition (11)) we obtain 

A dH 
- - - 2lOm C ( k )  [{lel,(k) -Il(k)}Il(k8 + !&X(k) - k f 4 ( k ) & ( k f ) 1 g  * d f  

+ 4n-'[(x + 1) e5El(x) - 11 + f p A  f .  (41) 
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'I 
FIGURE 5. Shear stress exerted on the tube wall. 

The integral term in (41) becomes 4n-l In (1 - E )  + 2.53.. . as E-+ 1, where the numerical 
constant is obtained by the numerical integration of the integral. By applying the 
boundary condition (10) and matching the inner and outer expansions, we obtain 

p A  = 2a-1[tan(8,-900)-4mr-1(lns+0~410)]. (42) 

To show the meniscus deformation due to viscous forces, we plot in figure 7 the 
variation in meniscus slope expressed as 

as a function of 6. We see that, except in the neighbourhood of the contact line, the 
meniscus slope is almost linear, i.e. the meniscus has a spherical shape similar to a static 
one when E 4 1. As 8 -+ 0, the non-spherical region becomes condensed, with severe 
meniscus deformation near the contact line. 

Equation (41) can be integrated once more for the meniscus profile 

U C(k) "m +W)) {Io(kE) -10(41 + W l ( W  (E2 - 1) 

dk 4 
- 2 ~ l ( k ) { ~ ~ l ( k E ) - ~ ~ ( k ) } 1  T - - e x e Z E 1 ( x )  k n  +$$)A(E2- l), (44) 

where we have applied the arbitrary boundary condition H = 0 at 5 = 1 (x = 0). At 
5 = 0 (x-+oo), H = & 1 by definition of h (with the plus sign for ho > 0 and the minus 
sign for h, < 0 ) ,  thus 

I qom C ( k )  [(lo(k) +4(W){Io(k) - 1) + 4 ( W k  - 24(k))I g 
I 

I +itan(P,- 9Oo)-~n~(1ns+0~410)  

= )*tan(8,- 90°)-a(&rIn~+0.429)), (45) 
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FIGURE 6. Normal stress on the meniscus (z = 0). 
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FIGURE 7. Meniscus slope change due to viscous forces in terms of 

The dotted lines represent the slope change for the apparent spherical meniscus profile defined by 
(57). 
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which when IT = 0, for the static system, becomes h = iI tan (0, - go”)]. We see that for 
A < 1 we need IT 4 1 and (0, - 90’1 Q 1 in general. These two restrictions are consistent 
with our other assumptions, since pga2/y, 4 1 and 8 4 1 can be maintained indepen- 
dently of the above, and Q < 1 can easily yield paU/,u 4 1.  In  the special case in which 
A = 0 while H + 0, another perturbation parameter which characterizes the departure 
of the meniscus shape from 7 = 0 should be employed instead of A. 

3. Slippage model 11 

(6) is now replaced by 
For model I1 (figure 2 b ) ,  (a)-( 11) still apply, except that the slip boundary condition 

which is the non-dimensionalized form of (2). The first term &,O) of the outer expansion 
inserted into (46) again produces (21)’ so that the solution for #fp) is again (23) and 
identical to that for model I. For the inner expansion, (28)-(31) apply without modifi- 
cation, but instead of (32) we have 

Garabedian (1966) obtained the solution of the problem thus defined for y%h0): 

$h”) = 2 n - l ~  sin-1 {+[x2 + ( y  +- 1 )2]t - +[z2 + ( y - 1 )2]t}. (48) 

We can again demonstrate that various abnormalities encountered with the no-slip 
solution are resolved by permitting slip. Figure 8 shows the streamlines at the corner 
calculated from (48). We see that the flow velocity is again single-valued ( = 0 )  at the 
contact line. Because the boundary condition on the solid surface changes from no 
tangential stress to no slip at y = 1, a weak singularity in the viscous stress tensor 
occurs there. Very near this point, the components of the stress tensor and the pressure 
p behave in accordance with 

1 (1 +2sinw’+sin2w’) 
2ne [c(l+sinw’)]t ’ 

N -- 

where 
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FIGURE 8. Streamlines near the conta,ct line for model 11.2 I (a- r)/Z and y z/Z. 

It can also be seen that no infinitely large amount of viscous dissipation occurs near the 
contact line. Therefore the flow field described by (48) is likewise free of the inade- 
quacies discussed by Huh & Scriven (1971). 

The inner and outer solutions can be matched in exactly the same manner as with 
model I. The inner expansion $h0) in terms of the outer variables again results in (36b) .  
The inner-expansion terms for (37)-(39) are given by 

2 x  
(X,O) = -- a!i n (1 + x2p 

a$$)) - (49) 

Figures 9-1 1 compare these quantities for models I and 11. Equation (61) shows that 
for model I1 the liquid freely slips from the contact line ( z  = 0) to the point z = I ,  and 
then near z = 1 €or z > I ,  the shear stress T, - -4pU/?r[21(z-l)]aY which becomes 
finite when integrated along the solid surface including the contact line. 

The equations corresponding to (40)-(42) and (44) are 

- Int(40)-- ?r€ [ (1+~2)-*+(1+~2)- t_-  X 'I 4 
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FIGURE 9. Liquid velocity on the meniscus near the contact line: comparison of the no-slip, 
model I and model I1 solutions. 

p A  = 2r-1 [tan (0, - 90") - 4rn-1 (In E -I- 0.294)], (54) 

h 
- H  - 
U 

- x In 221 + $pA(E2 - I ) ,  

where Int  (i) designates the integral term in equation (i). 

(55) 

4. Discussion 
To calculate the flow field and the meniscus profile from our equations, we must 

know 1. For model I, an approximate theory was proposed by Tolstoi (1952a) to 
predict it : 1 = 2d[exp (and2y,( 1 - cos 0,)/kT) - 11, 

where d is the average diameter of a liquid molecule, k is the Boltzmann constant, T is 
the absolute temperature and a is a molecular parameter taken to be + by Tolstoi. For 
mercury on glass at  20 "C, Tolstoi (1952 b )  deduced from his measurements that 
1 1: 0.45-0.49 pm. When (56) was used for the same system with yL = 490 dynelcm 
and d = 0.3 nm, he obtained 1 = 14.4pm if 0, = 140" and 1 = 0.18pm if 0, = 90". Thus 
1 is seen to be very sensitive to 0,, with 1 = 0 when 0, = 0. For systems with small O,, 
indeed, the slip mechanism might not be realistic and the surface diffusive scheme may 
be more plausible. 

For model 11, there appears to be no appropriate theory to calculate the reorienta- 
tion time T = l/U of the liquid molecules on the solid; this aspect of the problem 

(56)  
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model I and model I1 solutions. 
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FIQURE 11. Shear stress on the solid surface near the contact line: comparison of the no-slip, 
model I and model I1 solutions. 

warrants further study from the molecular, rather than continuum, point of view. The 
observations of Elliott & Riddiford (1967) pose an interesting possibility for model 11: 
they reported that for very small U’s the dynamic advancing contact angle was identi- 
cal to the static angle, but that at a certain U, the dynamic contact angle suddenly 
started to increase. We propose the possibility that the slip length 1 ( = r U )  at U, was 
identical to the dimension d of the liquid molecules; only when U > U,, will I being 
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larger than d have any physical sense of slippage, which may have been revealed as the 
sudden increase in the dynamic contact angle. One crude approximation we might 
make is then T N dlU,, and thus 1 2: UdIU,. 

Whereas model I assumes that I is independent of U ,  it is proportional to U in 
model 11. The above argument poses another possibility: that I does not represent true 
slippage but merely recognizes the fact that the liquid consists of molecules of finite 
size. Then our slippage scheme serves to remove the mathematical singularity inherent 
in the continuum formulation of the hydrodynamic problem with the no-slip boundary 
condition. The slip length is then again independent of U ,  and would be of the order of 
magnitude of d. 

In  many studies the dynamic contact angle Oexp was measured as a function of U ,  
and attempts were made to correlate it with 8,, p, yL and other parameters. One 
unsettling question is whether or not the measured Oexp was indeed O,, with no in- 
stances of falsely identifying as 8, the meniscus slope angle at  a small distance from the 
actual contact line. If severe deformation of the meniscus occurs near the contact line 
owing to viscous forces, as Hansen & Toong (1971 b )  pointed out, the significance of the 
0, measurements will therefore be in doubt. 

Using the approximate meniscus shape which we have calculated, we can estimate 
the viscous deformation of the meniscus near the contact line, to examine whether such 
measurements are erroneous. Because the severe meniscus deformation is concen- 
trated near the contact line with E < 1, and the meniscus shape except for the contact- 
line region is almost the same as the static one (see figure 7)) an apparent contact angle 
Oapp can be defined which would result in a static pressure equivalent to Tn at the 
meniscus apex. From (40), we obtain 

Combining this with (42) for model I, we get 

provided that Oapp and 0, are close to 90". The corresponding equation obtainable from 
(54) for model I1 is practically identical to (58)) which may therefore be used for both 
models. The change Oapp - 8, in the meniscus slope angle thus serves as an estimate of 
the viscous deformation of the meniscus. The dashed lines in figure 7 show the slope 
change for the apparent spherical meniscus profiles when 0, = 0, i.e. 

p ,  + 4.068 = 2 r 1  tan (BaPp - 90"). 

Oapp = 8,- 4n-la(lns - 1-188)) 

(57) 

(58) 

-4n-1 (lne- 1*188)5. 

To estimate Oapp - 0, for the systems which have been employed in the literature to 
measure dynamic contact angles, we must know I for the systems; because this is not 
available, we shall set I equal to a lower bound of 1 nm (10-7 cm), and thus obtain the 
largest possible deformation due to viscous forces. For the first two systems in table 1, 
which are taken from the data of Hoffman ( 1  975)) the viscous deformation could indeed 
be large, and it is almost certain that 8, has not been measured. In  table 1,  we also list 
the experimentally measured values of Oexp - 8,. The calculated Oapp - 6, for 1 = I nm 
is of the same order of magnitude as the experimental values of Oexp - 0, of Hoffmann 
(1975)) thus suggesting the possibility that 0, was in fact 0, and that Bexp, which he 
measured as the dynamic contact angle, was Oapp. Hoffman himself implied this by 
using the term 'apparent ' contact angle. Because we assumed I = 1 nm, which should 
be of comparable magnitude with the diameter of the liquid molecules, we might 
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Calculated e,, - 0, 
System U x lo3 (cm/s) ( , u U / y ~ )  x 102 ed (experimental) 

Admex 760/air/glass 0.847 2.11 23.1" 21" 
S, = 69", a = 0.978 mm 1.98 4.94 54.0" 45" 
(Hoffman 1975) 2.07 5.16 56.4" 42" 

2.96 7.38 80.7" 45" 
3.02 7.53 82-3" 47" 

Santicizer 405/air/glass 1.86 0.48 5.2" 1.7" 
8, = 67", a = 0.978 mm 3.46 0.89 9.7" 8.2" 
(Hoffman 1975) 5.26 1-36 14-9" 17.6" 

16.9 4.36 47.7" 48" 
26.3 6.79 74.2" 54" 

Nuj ol/air/glass 10.9 0.0635 0.7" 4" 
8, = 21", a = 1.19 mm 22.7 0.132 1.5" 10" 
(Hansen & Toong 197 1 a) 33.7 0-196 2.2" 13" 

56.7 0.330 3.7O 18" 
73.4 0.428 4.7" 20" 

Nu j ol/air/glass 40 0.140 1.4" 11" 
8, = 23O, a = 0.33 mm 80 0.279 2.8" 20" 
(Rose & Heins 1962) 120 0.419 4.2" 27" 

160 0.558 5.7O 34" 
200 0.698 7.1" 42" 

TABLE 1. Meniscus deformation due to  viscous forces, in terms of Oapp- 8, [see (58)]. I = 1 nm 
is used as a lower bound for the slip length. 

further suggest that employing the slip condition but assuming 11: d is necessary 
merely to remove the mathematical singularity arising from the continuum formula- 
tion of the hydrodynamic problem with the no-slip condition. 

For the last two systems in table 1, which are taken from the experimental data of 
Hansen & Toong (1971~) and Rose & Heins (1962), the viscous deformation is rela- 
tively small, even though the application of (58) for such systems with low values of 
Oexp would strictly be inappropriate. Here it appears that 0, is truly different from 0, 
and varies with U .  A theoretical study by Miller & Ruckenstein (1974) supports this 
point, showing that the deviation of the contact angle from 0, causes either wetting 
(advancement of the contact line) or dewetting (recession). 

When a liquid slowly penetrates into a circular capillary tube, the Washburn (1921) 
equation describes approximately the relation between the displacement pressure P 
and the meniscus speed U :  

U = (P + 2y,u-l cos 0,) a2/8pL, (59) 
where L is the length of the liquid penetration. In  deriving this equation, the viscous 
stress is given by that for conventional Poiseuille flow, which takes no account of the 
presence of the meniscus. From our derivation, we can calculate the liquid pressure at  
z = L , r  = 0: 

P N 2p yoa a C ( k )  [{kIo(k) - 21,(lc)} cos (kg) -I1(/%) (cos ( k t )  - l)] ; 
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in which for PA we have used (42), which is practically the same as (54) and may be 
used for both model I and model 11. If L & a, the integral term of (60) becomes - 8pUL/a2, and we obtain from (60) 

in which we have set -tan (Od- 90") 21 cos 8, since 8, N 90". Equation (61) is written 
in a form similar to (59) but with a correction to L, which accounts for the presence of 
the meniscus. For systems in which 8, is not close to go", (61) does not, of course, apply 
and an added correction is needed for the liquid flow near the curved meniscus. 

Careful microscopic observations of the contact-line movement can determine which 
of the spreading mechanisms suggested in the introduction applies to a particular 
spreading system. In view of the great difficulty in performing such experiments, our 
complementary theoretical study of the possibility of slippage may suggest a direction 
for experimental observations. Puture theoretical efforts should be directed at 
solutions to the slippage models for contact angles not close to 90" and for various 
geometries of the spreading interface, and at  better estimates of the slip length once 
the spreading process is better understood from the molecular point of view. 

The authors are grateful to Professor R. G .  Cox for many helpful suggestions. This 
research was supported by the Defence Research Board of Canada (DRB grant 
9530-47). 
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